更多>>精华博文推荐
更多>>人气最旺专家

吕同老

领域:新闻在线

介绍:;;由于缺少创新,我国企业面临着“卖一台电脑只能赚一捆大葱”的尴尬;由于缺少创新,中国卖出8亿件衬衫才能买回一架A380飞机;由于缺少创新,我国企业不得不将数控机床售价的40%、计算机售价的30%支付给国外专利者;由于不断创新,我国高速铁路才会从空白到领跑世界,世界最快列车才会驰骋于沪杭高铁;由于不断创新,袁隆平才被人们称为“世界杂交水稻之父”、“当代神农”;由于不断创新,我国航天人才会牵引“神舟”、领航“嫦娥”。...

朱志鹏

领域:寻医问药

介绍: 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即尊龙现金娱乐一下,尊龙现金娱乐一下,尊龙现金娱乐一下,尊龙现金娱乐一下,尊龙现金娱乐一下,尊龙现金娱乐一下

尊龙国际娱乐
本站新公告尊龙现金娱乐一下,尊龙现金娱乐一下,尊龙现金娱乐一下,尊龙现金娱乐一下,尊龙现金娱乐一下,尊龙现金娱乐一下
7ew | 2019-07-19 | 阅读(474) | 评论(727)
一年时间下来,恒恒获得了挺有含金量的几个奖项,算是小有成就,恒爸对越来越火爆的少儿编程有了自己的思考。【阅读全文】
尊龙现金娱乐一下,尊龙现金娱乐一下,尊龙现金娱乐一下,尊龙现金娱乐一下,尊龙现金娱乐一下,尊龙现金娱乐一下
art | 2019-07-19 | 阅读(569) | 评论(997)
——马克思核心探究:【主题3】明清时期中国科技未能发展成为近代科学的原因材料二 他们固然没有把个人与社会人分开,也没有把社会人与整个自然界分开。【阅读全文】
8hu | 2019-07-19 | 阅读(309) | 评论(277)
防损员本身要有高度的自律能力,首先要管好自已,你自已都管不住自已,怎么能管好别人呢?在任何时候、在所有员工中,都要自觉遵守司的各项规制度,严格要求自已的一言一行,防损员要从一点一滴做起,对每一个岗位负责、对每一事情负责、都要树立良好的工作形象,要用老实的奉献精神、在工作中尽职尽责,在员工中用无形的气力进步自已的工作威信,让所有员工看到防损员之后,就象是老总的身影在他们的身边,在检验他们的工作,让员工们自然形成一种自觉的紧迫感和威摄力,这样、才能起到一个防损员的真正作用。【阅读全文】
j6u | 2019-07-19 | 阅读(987) | 评论(42)
(三)积极上进,继续学习深造。【阅读全文】
co6 | 2019-07-19 | 阅读(578) | 评论(461)
一、质量安全“十严禁”红线第三条规定,必须强化施工工序和现场管理,确保支(防)护到位,严禁支护滞后和安全步距超标。【阅读全文】
l7b | 2019-07-18 | 阅读(558) | 评论(94)
最终我认识到只有不断加强学习,积累充实自我,才能更好的立足本职岗位,高标准的完成好工作。【阅读全文】
aw7 | 2019-07-18 | 阅读(17) | 评论(520)
体会到外公因收到爱的回报而激动的心情。【阅读全文】
iza | 2019-07-18 | 阅读(167) | 评论(939)
PAGE考点48圆的一般方程要点阐述要点阐述圆的一般方程的定义(1)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F=0叫做圆的一般方程,其圆心为,半径为.(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0表示点.(3)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F典型例题典型例题【例】已知两点P1(4,9)和P2(6,3),求以P1P2为直径的圆的方程.②当PP1、PP2的斜率有一个不存在时,有x=4或x=6,这时点P的坐标是(4,3)或(6,9),它们都满足方程①.又P1(4,9)、P2(6,3)两点坐标也满足方程①,∴所求圆的方程为(x–5)2+(y–6)2=10.解法三:设P(x,y)是圆上任意一点,则|PP1|2+|PP2|2=|P1P2|2.(x–4)2+(y–9)2+(x–6)2+(y–3)2=(4–6)2+(9–3)2.化简,得x2+y2–10x–12y+51=0.即(x–5)2+(y–6)2=10为所求圆的方程.【秒杀技】一般地,以A(x1,y1),B(x2,y2)为直径的圆的方程是(x–x1)(x–x2)+(y–y1)(y–y2)=0,此结论被称为圆的直径式方程.此结论在解题时要注意灵活运用,可给解题带来许多方便.小试牛刀小试牛刀1.圆x2+y2+10x=0的圆心坐标和半径长分别是(  )A.(–5,0),5B.(5,0),5C.(0,–5),5D.(0,–5),25【答案】A【解析】因为x2+y2+10x=(x+5)2+y2–25=0,所以圆的方程为(x+5)2+y2=25.由圆的标准方程可知圆心为(–5,0),半径长为5.2.方程x2+y2+2ax–2y+a2+a=0表示圆,则实数a的取值范围是()A.a≤1B.a1C.a1D.0a1【答案】B【解析】由D2+E2–4F0,得(2a)2+(–2)2–4(a2+a)0,即4–4a0,【解题技巧】圆的一般方程必须满足D2+E2–4F0的条件,确定圆的一般方程,需要确定D、E、F3.已知圆x2+y2-2ax-2y+(a-1)2=0(0<a<1),则原点O在(  )A.圆内B.圆外C.圆上D.圆上或圆外【答案】B4.若圆x2+y2–2x–4y=0的圆心到直线x–y+a=0的距离为,则a的值为()A.–2或2B.或C.2或0D.–2或0【答案】C【解析】把圆x2+y2–2x–4y=0化为标准方程为(x–1)2+(y–2)2=5,故圆心坐标为(1,2),由圆心到直线x–y+a=0的距离为,得=,所以a=2,或a=0.5.已知定点A(a,2)在圆x2+y2-2ax-3y+a2+a=0的外部,则a的取值范围为________.【答案】eq\b\lc\(\rc\)(\a\vs4\al\co1(2,\f(9,4)))6.判断方程x2+y2-4mx+2my+20m【解析】解法一:由方程x2+y2-4mx+2my+20m可知D=-4m,E=2m,F=∴D2+E2-4F=16m2+4m2-80m+80=20(m-2)2,因此,当m=2时,D2+E2-4F=0,它表示一个点,当m≠2时,D2+E2-4F0,原方程表示圆的方程,此时,圆的圆心为(2m,-m),半径为r=eq\f(1,2)eq\r(D2+E2-4F)=eq\r(5)|m-2|.解法二:原方程可化为(x-2m)2+(y+m)2=5(m-2)2,因此,当m当m≠2时,原方程表示圆的方程.此时,圆的圆心为(2m,-m),半径为r=eq\r(5)|m-2|.【规律总结】(1)形如x2+y2+Dx+Ey+F=0的二元二次方程,判定其是否表示圆时有如下两种方法:①由圆的一般方程的定义判断D2+E2-4F是否为正.若D2+E2-4F0,则方程表示圆,否则不表示圆.②将方程配方变形成“标准”形式后,根据圆的标准方程的特征,观察是否可以表示圆.(2)在书写本题结果时,易出现r=eq\r(5)(m-2)的错误结果,导致这种错误的原因是没有理解对一个数开偶次方根的结果为非负数.考题速递考题速递1.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆的面积最大时,圆心坐标为(  )A.(-1,1)B.(1,-1)C.(-1,0)D.(0,-1)【答案】D【解析】r=eq\f(1,2)eq\r(k2+4-4k2)=eq\f(1,2)【阅读全文】
尊龙现金娱乐一下,尊龙现金娱乐一下,尊龙现金娱乐一下,尊龙现金娱乐一下,尊龙现金娱乐一下,尊龙现金娱乐一下
myz | 2019-07-18 | 阅读(289) | 评论(939)
第一条访问者在从事与本网站相关的所有行为(包括但不限于访问浏览、利用、转载、宣传介绍)时,必须以善意且谨慎的态度行事;访问者不得故意或者过失的损害本网站的各类合法权益,不得利用本网站以任何方式直接或者间接的从事违反中华人民共和国法律、国际公约以及社会公德的行为。【阅读全文】
c6i | 2019-07-17 | 阅读(674) | 评论(625)
曹操听了直摇头。【阅读全文】
6sh | 2019-07-17 | 阅读(34) | 评论(88)
在这里,人大代表行使的权力是A.立法权和决定权B.审议权和质询权C.任免权和监督权D.提案权和表决权*复习提问1、对政府权力进行制约和监督:为什么、怎么样2、政府做某件事的原因、措施必修二政治生活第三单元发展社会主义民主政治高考考点1.人民代表大会及其常设机关的法律地位2.人民代表大会的职权3.人民代表的产生4.人民代表的职责5.人民代表大会制度的基本内容6.人民代表大会与其他国家机关的关系第五课我国的人民代表大会制度人民代表大会:国家权力机关2、人民代表大会全国人民代表大会地方各级人民代表大会(性质、作用)3、人大代表①性质②地位③职权④常设机关地位产生任期义务:权利:①审议权②表决权③提案权④质询权1、人民如何行使当家作主的权力?①行使国家权力②协助宪法法律实施③与人民关系人民如何行使国家权力组成各级国家权力机关人民选出人大代表产生行政、审判、检察等机关统一行使国家权力具体行使管理国家和社会的权力决定全国和地方的一切重大事务1、人民怎样当家作主2、人民行使国家权力的机关——人民代表大会(1)全国人大性质:职权:地位及与其他国家机关关系常设机关:职权(2)地方各级人大我国国家权力机关完整体系:性质、地位、职权性质最高国家权力机关地方各级国家权力机关地位在我国的国家机构中居于最高地位,其他中央国家机关都由它产生,对它负责,受它监督本行政区域内的一切重大问题,都由它讨论决定,并由它监督实施职权最高立法权、最高决定权、最高任免权、最高监督权立法权、决定权、任免权、监督权常设机关全国人大常务委员会县级及县级以上人民代表大会设常务委员会,乡级人大不设常委会拓展深化:1、全国人大具有最高立法权、最高决定权、最高任免权、最高监督权。【阅读全文】
f5f | 2019-07-17 | 阅读(101) | 评论(247)
 导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实际问题,并体会导数在解决实际问题中的作用.3.提高将实际问题转化为数学问题的能力.重点:用导数解决实际生活中的最优化问题.难点:将实际问题转化为数学问题.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值 导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S最大=42=16(m2).预习交流2:提示:设半径为r,则高h=eq\f(27,r2),∴S=2πr·h+πr2=2πr·eq\f(27,r2)+πr2=eq\f(54π,r)+πr2,令S′=2πr-eq\f(54π,r2)=0,得r=3,∴当r=3时,用料最省.预习交流3:提示:(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?eq\b\lc\(\rc\(\a\vs4\al\co1(注:平均综合费用=平均建筑费用+平均购地费用,平\b\lc\\rc\(\a\vs4\al\co1(,,,,,))))eq\b\lc\\rc\)(\a\vs4\al\co1(均购地费用=\f(购地总费用,建筑总面积)))1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为,年销售量也相应增加.已知年利润=(每辆车的出厂【阅读全文】
me5 | 2019-07-17 | 阅读(577) | 评论(88)
一、质量安全“十严禁”红线(三)严禁内业资料弄虚作假。【阅读全文】
elh | 2019-07-16 | 阅读(825) | 评论(991)
请设计实验探究控制眼色的基因在X、Y染色体上还是在X染色体上,写出实验思路并预测结果及结论。【阅读全文】
jk6 | 2019-07-16 | 阅读(999) | 评论(619)
;;曹冲才7岁,就这么聪明,你还有其他更好的称象办法吗?找同学说一说,看看你们两个谁最聪明!;(1)曹冲的办法好吗?(2)如果现在让你们去称这头象的重量,你们有什么方法?①用人代替石头;②采用磅秤;③用小弹簧称象(杠杆原理);1、曹操听了摇头。【阅读全文】
共5页

友情链接,当前时间:2019-07-19

老牌利来 利来国际w66平台 w66.com 利来娱乐老牌 利来国际旗舰版
利来国际w66娱乐平台 利来国际娱乐平台 利来国际w66备用 利来国际w66备用 利来国际app
利来国际官网w66 利来国际官网w66 利来国际手机版 利来国际老牌博彩 利来国际最老牌
利来国际最给利的老牌 利来国际网址 利来国际官网平台 利来国际官网 利来国际最给力老牌
崇明县| 通许县| 阿城市| 濉溪县| 江门市| 儋州市| 郓城县| 金华市| 和林格尔县| 乳源| 安庆市| 临朐县| 确山县| 沙雅县| 科技| 衡水市| 阜阳市| 惠安县| 南安市| 广河县| 会理县| 理塘县| 兴国县| 清水河县| 宁武县| 定日县| 苏州市| 马鞍山市| 夹江县| 崇礼县| 青阳县| 新巴尔虎左旗| 湘阴县| 简阳市| 鄱阳县| 樟树市| 尉氏县| 云龙县| 兖州市| 普定县| 墨脱县| http://m.20988497.cn http://m.28348131.cn http://m.18760622.cn http://m.33311109.cn http://m.99281116.cn http://m.93599426.cn